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Motivation

The aim of molecular dynamics simulations is to understand the
relationships between the macroscopic properties of a molecular
system and its atomistic features. In particular, one would like to
evaluate numerically macroscopic quantities from models at the
microscopic scale.

Many applications in various fields: biology, physics, chemistry,
materials science.

Various models: discrete state space (kinetic Monte Carlo, Markov
State Model) or continuous state space (Langevin).

The basic ingredient: a potential V which maps a configuration
(x1, ..., xN) = x ∈ R

3Natom to an energy V (x1, ..., xNatom
). The

dimension d = 3Natom is large (a few hundred thousand to
millions).
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Dynamics

Newton equations of motion:

{

dX t = M−1Pt dt

dPt = −∇V (X t) dt
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Dynamics
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t

where γ > 0. Langevin dynamics is ergodic wrt

ν(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dν = Z−1 exp(−βV (x)) dx

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.
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Dynamics
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t

where γ > 0. Langevin dynamics is ergodic wrt

ν(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dν = Z−1 exp(−βV (x)) dx

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.

In the following, we focus on the overdamped Langevin (or
gradient) dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t ,

which is also ergodic wrt ν.
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Macroscopic quantities of interest

These dynamics are used to compute macroscopic quantities:

(i) Thermodynamic quantities (averages wrt ν of some
observables): stress, heat capacity, free energy,...

Eν(ϕ(X )) =

∫

Rd

ϕ(x) ν(dx) ≃ 1

T

∫ T

0

ϕ(X t) dt.

(ii) Dynamical quantities (averages over trajectories): diffusion
coefficients, viscosity, transition rates,...

E(F((X t)t≥0)) ≃
1

M

M
∑

m=1

F((Xm
t )t≥0).

Difficulties: (i) high-dimensional problem (N ≫ 1); (ii) X t is a
metastable process and ν is a multimodal measure.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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A toy model for solvation

Influence of the solvation on a dimer conformation [Dellago, Geissler].
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Compact state. Stretched state.

The particles interact through a pair potential: truncated LJ for all
particles except the two monomers (black particles) which interact
through a double-well potential. A slow variable is the distance
between the two monomers.
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A toy example in material sciences
The 7 atoms Lennard Jones cluster in 2D.

(a) C0, V = −12.53 (b) C1, V = −11.50 (c) C2, V = −11.48

(d) C3, V = −11.40

Figure: Low energy conformations of the Lennard-Jones cluster.

−→ simulation
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Limitation of direct molecular dynamics

Direct molecular dynamics is a very powerful technique to generate
atomistic trajectories. These trajectories can be useful in
themselves (dynamical quantities) or to get ensemble averages
(thermodynamic quantities).

Orders of magnitude: LJ potential costs ∼ 2µs/atom/timestep;
EAM potential costs ∼ 5µs/atom/timestep; AIMD costs (at least)
1 min/atom/timestep.

Thus, molecular dynamics’ reach is limited in terms of time and
length scales. −→ Depending on the quantity of interest, MD is
combined with other algorithms to get better sampling.

Thermodynamic quantities: variance reduction methods
(stratification, importance sampling, control variate, ...)
Dynamic quantities: rare event sampling methods, accelerated
dynamics (using Markov State models)
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Outline

Outline of this part:

1. Definition of the free energy associated with a reaction
coordinate.

2. Thermodynamics integration: A free energy computation
method based on stochastic processes with constraints.

3. Adaptive biasing techniques: Free energy computation
methods based on biased stochastic processes.

Mathematical tools: delta measure and co-area formula, Entropy
techniques and Logarithmic Sobolev Inequalities.

Underlying question: how to properly define and quantify
metastability ? Various answers: (i) rate of convergence to
equilibrium; (ii) exit time from metastable states; (iii) decorrelation
time; (iv) asymptotic variance of estimators.
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Reaction coordinate and free energy
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Reaction coordinate

We suppose in the following that we know a slow variable of
dimension 1: ξ(X t), where ξ : Rd → T is a so-called reaction
coordinate.

This reaction coordinate will be used to efficiently sample the
canonical measure using two techniques: (i) constrained dynamics
(thermodynamic integration) or (ii) biased dynamics (adaptive
importance sampling technique).

Free energy will play a central role.

For example, in the 2D simple examples: ξ(x , y) = x .
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Free energy
Let us introduce two probability measures associated with ν and ξ:

• The image of the measure ν by ξ:

ξ∗ν (dz) = exp(−βA(z)) dz

where the free energy A is defined by:

A(z) = −β−1 ln

(

∫

Σ(z)
e−βV δξ(x)−z(dx)

)

,

with Σ(z) = {x , ξ(x) = z} is a (smooth) submanifold of Rd ,
and δξ(x)−z(dx) dz = dx .

• The probability measure ν conditioned to ξ(x) = z :

νΣ(z)(dx) =
exp(−βV (x)) δξ(x)−z(dx)

exp(−βA(z)) .
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Free energy (2d case)

In the simple case ξ(x , y) = x , we have:

• The image of the measure ν by ξ:

ξ∗ν (dx) = exp(−βA(x)) dx

where the free energy A is defined by:

A(x) = −β−1 ln

(

∫

Σ(x)
e−βV (x ,y)dy

)

and Σ(x) = {(x , y), y ∈ R}.
• The probability measure ν conditioned to ξ(x , y) = x :

νΣ(x)(dy) =
exp(−βV (x , y)) dy

exp(−βA(x)) .
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The delta measure and the co-area formula
• The measure δξ(x)−z is defined by: for all test functions

ϕ : T → R and ψ : Rd → R,
∫

Rd

ϕ ◦ ξ(x)ψ(x) dx =

∫

T

ϕ(z)

(

∫

Σ(z)
ψ(x)δξ(x)−z(dx)

)

dz .

• The measure δξ(x)−z can be understood using a regularization

procedure: for any test function ψ : Rd → R,
∫

Σ(z)
ψ(x)δξ(x)−z(dx) = lim

ǫ→0

∫

Rd

ψ(x)δǫ(ξ(x)− z) dx

where limǫ→0 δ
ǫ = δ (Dirac mass at zero).

• The measure δξ(x)−z is related to the Lebesgue measure on
Σ(z) through:

δξ(x)−z = |∇ξ|−1dσΣ(z).

This is the co-area formula. We thus have:
A(z) = −β−1 ln

(

∫

Σ(z) e
−βV |∇ξ|−1dσΣ(z)

)

.
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Free energy: Remarks

• A is the free energy associated with the reaction coordinate or
collective variable ξ (angle, length, ...). The aim of many
molecular dynamic simulations is to compute A.

• A is defined up to an additive constant, so that it is enough to
compute free energy differences, or the derivative of A (the
mean force).

• A(z) = −β−1 lnZΣ(z) and ZΣ(z) is the partition function
associated with the conditioned probability measures:
νΣ(z) = Z−1

Σ(z)e
−βV |∇ξ|−1dσΣ(z).

• If U =

∫

Σ(z)
V Z−1

Σ(z)e
−βV δξ(x)−z(dx) and

S = −kB

∫

Σ(z)
ln
(

Z−1
Σ(z)e

−βV
)

Z−1
Σ(z)e

−βV δξ(x)−z(dx), then

A = U − TS (since β−1 = kBT ).
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Free energy on a simple example

What is free energy ? The simple example of the solvation of a
dimer. (Profiles computed using thermodynamic integration.)
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The density of the solvent molecules is lower on the left than on
the right. At high (resp. low) density, the compact state is more
(resp. less) likely. The “free energy barrier” is higher at high density
than at low density. Related question: interpretation of the free energy barrier in terms of

dynamics ?
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Free energy calculation techniques
There are many free energy calculation techniques:

(a) Thermodynamic integration. (b) Histogram method.

(c) Non equilibrium dynamics. (d) Adaptive dynamics.
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Thermodynamic integration
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Ingredient 1: the mean force
Thermodynamic integration is based on two ingredients:
Ingredient 1: The derivative A′(z) can be obtained by sampling the
conditional probability measure νΣ(z) (Sprik, Ciccotti, Kapral,
Vanden-Eijnden, E, den Otter, ...)

A′(z) = Z−1
Σ(z)

∫

Σ(z)

(∇V · ∇ξ
|∇ξ|2 − β−1

div

( ∇ξ
|∇ξ|2

))

e−βV |∇ξ|−1dσΣ(z)

=

∫

Σ(z)
f dνΣ(z)

where f = ∇V ·∇ξ
|∇ξ|2

− β−1
div

(

∇ξ
|∇ξ|2

)

. Another equivalent

expression:

A′(z) = Z−1
Σ(z)

∫

Σ(z)

∇ξ
|∇ξ|2 ·

(

∇Ṽ + β−1H
)

exp(−βṼ )dσΣ(z)

where Ṽ = V + β−1 ln |∇ξ| and H = −∇ ·
(

∇ξ
|∇ξ|

)

∇ξ
|∇ξ| is the mean

curvature vector.
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Ingredient 1: the mean force

In the simple case ξ(x , y) = x , remember that

A(x) = −β−1 ln

(

∫

Σ(x)
e−βV (x ,y)dy

)

,

so that

A′(x) =

∫

Σ(x)
∂xV e−βV (x ,y) dy

∫

Σ(x)
e−βV (x ,y) dy

=

∫

Σ(x)
∂xV dνΣ(x).
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Ingredient 1: the mean force

Proof in the general case : A′(z) = −β−1
d
dz

∫
Σ(z) exp(−βV )δξ(x )−z(dx)∫

Σ(z)
exp(−βV )δξ(x )−z(dx)

and
∫

T

(

∫

Σ(z)
exp(−βV )δξ(x)−z(dx)

)′

φ(z) dz

= −
∫

T

∫

Σ(z)
exp(−βV )δξ(x)−z(dx)φ′ dz

= −
∫

T

∫

Σ(z)
exp(−βV )φ′ ◦ ξ δξ(x)−z(dx) dz

= −
∫

Rd

exp(−βV )φ′ ◦ ξdx = −
∫

Rd

exp(−βV )∇(φ ◦ ξ) · ∇ξ
|∇ξ|2 dx

=

∫

Rd

∇ ·
(

exp(−βV )
∇ξ
|∇ξ|2

)

φ ◦ ξ dx

=

∫

T

∫

Σ(z)

(

−β∇V · ∇ξ
|∇ξ|2 +∇ ·

( ∇ξ
|∇ξ|2

))

exp(−βV )δξ(x)−z(dx)φ(z) dz
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Ingredient 2: constrained dynamics

Ingredient 2: It is possible to sample the conditioned probability
measure νΣ(z) = Z−1

Σ(z) exp(−βṼ )dσΣ(z) by considering the

following rigidly constrained dynamics:

(RCD)

{

dX t = −∇Ṽ (X t) dt +
√

2β−1dW t +∇ξ(X t)dΛt

dΛt such that ξ(X t) = z

The Lagrange multiplier writes dΛt = dΛm
t + dΛf

t , with
dΛm

t = −
√

2β−1 ∇ξ
|∇ξ|2

(X t) · dW t and

dΛf
t =

∇ξ
|∇ξ|2

·
(

∇Ṽ + β−1H
)

(X t) dt = f (X t) dt
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Ingredient 2: constrained dynamics

Equivalently, the rigidly constrained dynamics writes:

(RCD) dX t = P(X t)
(

−∇Ṽ (X t) dt +
√

2β−1dW t

)

+ β−1H(X t) dt

where P(x) is the orthogonal projection operator on Tx(Σ(ξ(x))):

P(x) = Id − n(x)⊗ n(x),

with n the unit normal vector: n(x) =
∇ξ
|∇ξ|(x).

(RCD) can also be written using the Stratonovitch product:
dX t = −P(X t)∇Ṽ (X t) dt +

√

2β−1P(X t) ◦ dW t .

One can check that ξ(X t) is constant if X t satisfies (RCD).
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Ingredient 2: constrained dynamics
[G. Ciccotti, TL, E. Vanden-Einjden, 2008] Assume wlg that z = 0. The
probability νΣ(0) is the unique invariant measure with support in
Σ(0) for (RCD).

Proposition: Let X t be the solution to (RCD) such that the law of
X 0 is νΣ(0). Then, for all smooth function φ and for all time t > 0,

E(φ(X t)) =

∫

φdνΣ(0).

Proof: Introduce the infinitesimal generator and apply the divergence theorem on

submanifolds : ∀φ ∈ C1(Rd ,Rd ),

∫
div Σ(0)(φ) dσΣ(0) = −

∫
H · φ dσΣ(0),

where div Σ(0)(φ) = tr(P∇φ). Notice that this rewrites:

∫
div Σ(0)(Pφ) dσΣ(0) = 0.
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Thermodynamic integration

Using the two ingredients above, A′(z) = limT→∞
1
T

∫ T

0
f (X t) dt,

where X t satisfies (RCD) and ξ(X 0) = z . The free energy profile is
then obtained by thermodynamic integration:

A(z)− A(0) =

∫ z

0

A′(z) dz ≃
K
∑

i=0

ωiA
′(zi ).

Notice that there is actually no need to compute f in practice since
the mean force can be obtained by averaging the Lagrange
multipliers:

A′(z) = lim
T→∞

1

T

∫ T

0

dΛt = lim
T→∞

1

T

∫ T

0

dΛf

t

since dΛt = dΛm
t + dΛf

t , with dΛm
t = −

√

2β−1 ∇ξ
|∇ξ|2

(X t) · dW t

and dΛf
t = f (X t) dt.



Introduction Free energy Thermodynamic integration Adaptive biasing techniques

Discretization of (RCD)

The two following schemes are consistent with (RCD):

(S1)

{

X n+1 = X n −∇Ṽ (X n)∆t +
√

2β−1∆W n + λn∇ξ(X n+1),
with λn ∈ R such that ξ(X n+1) = 0,

(S2)

{

X n+1 = X n −∇Ṽ (X n)∆t +
√

2β−1∆W n + λn∇ξ(X n),
with λn ∈ R such that ξ(X n+1) = 0,

where ∆W n = W (n+1)∆t − W n∆t . The constraint is exactly
satisfied (important for longtime computations). An approximation

of A′(0) = limT→∞
1
T

∫ T

0
dΛt is:

lim
T→∞

lim
∆t→0

1

T

T/∆t
∑

n=1

λn = A′(0).
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Error analysis

[Faou,TL, Mathematics of Computation, 2010] Using classical techniques
(Talay-Tubaro like proof), one can check that the ergodic measure
ν∆t
Σ(0) sampled by the Markov chain (X n)n≥0 is an approximation of

order one of νΣ(0): for all smooth functions g : Σ(0) → R,

∣

∣

∣

∣

∣

∫

Σ(0)
g dν∆t

Σ(0) −
∫

Σ(0)
g dνΣ(0)

∣

∣

∣

∣

∣

≤ C∆t.
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Rigidly and softly constrained dynamics

Another way to constrain the overdamped Langevin dynamics to
Σ(0) is to add a constraining potential (soft constraint):

dX
η
t = −∇V (X η

t ) dt −
1

2η
∇(ξ2)(X η

t ) dt +
√

2β−1dW t

One can show that limη→0 X
η
t = X t (in L∞

t∈[0,T ](L
2

ω
)-norm) where X t

satisfies (RCD). Notice that we used V and not Ṽ in the softly
constrained dynamics.

The statistics associated with the dynamics where the constraints
are rigidly imposed and the dynamics where the constraints are
softly imposed are different: “a stiff spring 6= a rigid rod” (van
Kampen, Hinch,...).
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Back to the sampling of ν

TI yields a way to compute
∫

Rd φdν:
∫

Rd

φdν = Z−1

∫

Rd

φe−βV dx

= Z−1

∫

T

∫

Σ(z)
φe−βV δξ(x)−z(dx)

= Z−1

∫

T

∫

Σ(z) φe
−βV δξ(x)−z(dx)

∫

Σ(z) e
−βV δξ(x)−z(dx)

∫

Σ(z)
e−βV δξ(x)−z(dx) dz

=

(
∫

T

e−βA(z) dz

)−1 ∫

T

(

∫

Σ(z)
φdνΣ(z)

)

e−βA(z) dz

where, we recall, Σ(z) = {x , ξ(x) = z},
A(z) = −β−1 ln

(

∫

Σ(z)e
−βV δξ(x)−z(dx)

)

and

νΣ(z) = e−βV δξ(x)−z(dx)/
∫

Σ(z)e
−βV δξ(x)−z(dx).
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Generalization to Langevin dynamics

Interests: (i) Newton’s equations of motion are more “natural”;
(ii) is less sensitive to choice of the timestep choice; (iii) leads to
numerical schemes which sample the constrained measure without
time discretization error (Metropolis-Hastings);







dqt = M−1pt dt

dpt = −∇V (qt) dt − γM−1pt dt +
√

2γβ−1dWt +∇ξ(qt) dλt
ξ(qt) = z .

The probability measure sampled by this dynamics is

µT∗Σ(z)(dqdp) = Z−1 exp(−βH(q, p))σT∗Σ(z)(dqdp)

where H(q, p) = V (q) + 1
2
pTM−1p.
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Generalization to Langevin dynamics

The marginal of µT∗Σ(z)(dqdp) in q writes:

νMΣ(z) =
1

Z
exp(−βV (q))σMΣ(z)(dq) 6=

1

Z
exp(−βV (q))δξ(q)−z (dq).

Thus, the “free energy” which is naturally computed by this
dynamics is

AM(z) = −β−1 ln

(

∫

Σ(z)
exp(−βV (q))σMΣ(z)(dq)

)

.

The original free energy may be recovered from the relation: for
GM = ∇ξTM−1∇ξ,

A(z)− AM(z) = −β−1 ln

(

∫

Σ(z)
det(GM)−1/2dνMΣ(z)

)

.
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Generalization to Langevin dynamics

Moreover, one can check that:

lim
T→∞

1

T

∫ T

0

dλt = (AM)′(z).
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Discretization of the constrained Langevin dynamics
For simplicity, let us consider β = 1, M = Id and let us denote
M = Σ(0). Let us rewrite the extended measure in phase space:

µ(dq dp) = Z−1
µ e

−H(q,p) σT∗M(dq dp)

where H(q, p) = V (q) + |p|2

2
and σT∗M(dq dp) is the phase space

Liouville measure on

T ∗M =
{

(q, p) ∈ R
d × R

d , ξ(q) = 0 and [∇ξ(q)]T p = 0
}

.

The marginal of µ in q is ν = Z−1
ν exp(−βV (q))σM(dq). Indeed,

the measure µ rewrites:

µ(dq dp) = ν(dq)κq(dp)

where

κq(dp) = (2π)
m−d

2 e
− |p|2

2 σT∗
q M(dp)

with T ∗
qM =

{

p ∈ R
d , [∇ξ(q)]T p = 0

}

⊂ R
d .
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The constrained Langevin dynamics
The constrained Langevin dynamics (γ > 0 is the friction parameter)







dqt = pt dt

dpt = −∇V (qt) dt − γpt dt +
√

2γdWt +∇ξ(qt) dλt
ξ(qt) = 0

is ergodic with respect to µ. Notice that [∇ξ(qt)]Tpt = 0.
It can be seen as the composition (operator splitting) of:

• the constrained Hamiltonian dynamics:






dqt = pt dt

dpt = −∇V (qt) dt +∇ξ(qt) dλt
ξ(qt) = 0.

• the Ornstein-Uhlenbeck process on momenta:










dqt = 0

dpt = −γpt dt +
√

2γdWt +∇ξ(qt) dλt
[∇ξ(qt)]Tpt = 0.

.
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The Ornstein-Uhlenbeck part
Discretization of the Ornstein-Uhlenbeck process on momenta:
midpoint Euler leaves the measure κqn and thus µ invariant:






pn+1 = pn − ∆t

2
γ (pn + pn+1) +

√

2γ∆t G n +∇ξ(qn)λn,

∇ξ(qn)Tpn+1 = 0,

In the following, we denote one step of this dynamics by
ΨOU

∆t : T ∗M → T ∗M:

ΨOU
∆t (q

n, pn) = (qn, pn+1).

Remark: The projection is always well defined, and easy to
implement:

pn+1 = Π∗(qn)

(

(1 −∆tγ/2)pn +
√

2γ∆t G n

1 +∆tγ/2

)

where Π∗(q) = Id −∇ξ(q)G−1(q)[∇ξ(q)]T is the orthogonal
projector from R

d to T ∗
qM.
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The Hamiltonian part
Discretization of the constrained Hamiltonian dynamics (RATTLE):














































pn+1/2 = pn − ∆t

2
∇V (qn) +∇ξ(qn)λn+1/2,

qn+1 = qn +∆t pn+1/2,

ξ(qn+1) = 0, (Cq)

pn+1 = pn+1/2 − ∆t

2
∇V (qn+1) +∇ξ(qn+1)λn+1,

[

∇ξ(qn+1)
]T

pn+1 = 0, (Cp)

where λn+1/2 ∈ R
m are the Lagrange multipliers associated with

the position constraints (Cq), and λn+1 ∈ R
m are the Lagrange

multipliers associated with the velocity constraints (Cp).

In the following, we denote one step of the RATTLE dynamics by
ΨRATTLE

∆t : T ∗M → T ∗M:

ΨRATTLE
∆t (qn, pn) = (qn+1, pn+1).
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Discretization by a Strang splitting

Discretization of the constrained Langevin dynamics (Strang
splitting):















(qn, pn+1/4) = ΨOU
∆t/2(q

n, pn)

(qn+1, pn+3/4) = ΨRATTLE
∆t (qn, pn+1/4)

(qn+1, pn+1) = ΨOU
∆t/2(q

n+1, pn+3/4)

But there is a bias due to time discretization...
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Unbiasing using Hastings-Metropolis
Let us denote by

S(q, p) = (q,−p)

the momentum reversal map and

Ψ∆t(q, p) = S
(

ΨRATTLE
∆t (q, p)

)

.

Fundamental properties of RATTLE: for ∆t small enough,

• Ψ∆t (Ψ∆t(q, p)) = (q, p)

• Ψ∆t is a symplectic map, which thus preserves σT∗M

[Hairer, Lubich, Wanner, 2006] [Leimkuhler, Reich, 2004] [Leimkuhler, Skeel, 1994].

One can thus add a Metropolis Hastings rejection step to get
unbiased samples: if (q′, p′) = Ψ∆t(q, p), the MH ratio writes:

δΨ∆t (q′,p′)(dq dp) e
−H(q′,p′) σT∗M(dq′ dp′)

δΨ∆t(q,p)(dq
′ dp′) e−H(q,p) σT∗M(dq dp)

= e
−H(q′,p′)+H(q,p).
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The constrained GHMC algorithm

Constrained Generalized Hybrid Monte Carlo algorithm ([TL, Rousset,

Stoltz 2012], constrained version of [Horowitz 1991]):



























































(qn, pn+1/4) = ΨOU
∆t/2(q

n, pn)

(q̃n+1, p̃n+3/4) = Ψ∆t(q
n, pn+1/4)

If Un ≤ e
−H(q̃n+1,p̃n+3/4)+H(qn,pn+1/4)

accept the proposal: (qn+1, pn+3/4) = (q̃n+1, p̃n+3/4)

else reject the proposal: (qn+1, pn+3/4) = (qn, pn+1/4)

p̃n+1 = −pn+3/4

(qn+1, pn+1) = ΨOU
∆t/2(q

n+1, p̃n+1)

where Un ∼ U(0, 1).
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Is it really reversible in practice?

Problem: RATTLE is only well defined and reversible for locally
small timesteps. Three possible difficulties:

• Ψ∆t(q, p) may not be defined;

• If Ψ∆t(q, p) is well defined, Ψ∆t (Ψ∆t(q, p)) may not be
defined;

• If Ψ∆t(q, p) and Ψ∆t (Ψ∆t(q, p)) are well defined, one may
have Ψ∆t (Ψ∆t(q, p)) 6= (q, p).
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An example where Ψ∆t (Ψ∆t(q, p)) 6= (q, p)

Here, V = 0 and the projection is defined as the closest point
to M. Notice that q′′ 6= q!



Introduction Free energy Thermodynamic integration Adaptive biasing techniques

The Lagrange multiplier function
In order to introduce the the set of positions and momenta from
which RATTLE is well defined, let us rewrite the RATTLE
dynamics as follows:















qn+1 = qn +∆t

[

pn − ∆t

2
∇V (qn)

]

+∆t∇ξ(qn)λn+1/2

pn+1 = Π∗(qn)

(

pn − ∆t

2

(

∇V (qn) +∇V (qn+1)
)

+∇ξ(qn)λn+1/2

)

where

∆tλn+1/2 = Λ

(

qn, qn +∆t

[

pn − ∆t

2
∇V (qn)

])

.

The function Λ : D → R
m, where D is an open set of M× R

d is
the Lagrange multiplier function which satisfies:

∀(q, q̃) ∈ D, q̃ +∇ξ(q)Λ(q, q̃) ∈ M.
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Local well-posedness

The function Λ is only defined on D and thus ΨRATTLE
∆t is only

defined on the open set:

A =

{

(q, p) ∈ T ∗M,

(

q, q +∆t M−1

[

p − ∆t

2
∇V (q)

])

∈ D
}

and likewise, Ψ∆t = S ◦ΨRATTLE
∆t is defined on A.

Properties ([TL, Rousset, Stoltz 2018])

If Λ is C 1, then Ψ∆t : A → T ∗M is a C 1 local diffeomorphism,
locally preserving the phase-space measure σT∗M(dq dp).

How to build such a Lagrange multiplier function? Theoretically:
Implicit Function Theorem. Numerically: Newton algorithm, root
finding algorithms. In general, it is only locally well-defined.
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The reverse projection check
Let us now introduce the RATTLE dynamics with momentum
reversal and reverse projection check: for any (q, p) ∈ T ∗M,

Ψrev

∆t (q, p) = Ψ∆t(q, p)1{(q,p)∈B} + (q, p)1{(q,p)6∈B}

where the set B ⊂ A ⊂ T ∗M is defined by

B =
{

(q, p) ∈ A, Ψ∆t(q, p) ∈ A and Ψ∆t ◦Ψ∆t(q, p) = (q, p)
}

.

Properties ([TL, Rousset, Stoltz 2018])

Let us assume that Λ is C 1 and satisfies the non-tangential
condition: ∀(q, q̃) ∈ D,

[∇ξ (q̃ +∇ξ(q)Λ(q, q̃))]T ∇ξ(q) ∈ R
m×m is invertible.

Then, the set B is the union of path connected components of the
open set A ∩Ψ−1

∆t(A). It is thus an open set of T ∗M. Moreover,
Ψrev

∆t : T ∗M → T ∗M is globally well defined, preserves globally the
measure σT∗M(dq dp) and satisfies Ψrev

∆t ◦Ψrev

∆t = Id.
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The globally well-defined constrained GHMC
The constrained GHMC algorithm writes:



























































(qn, pn+1/4) = ΨOU
∆t/2(q

n, pn)

(q̃n+1, p̃n+3/4) = Ψrev
∆t (q

n, pn+1/4)

If Un ≤ e
−H(q̃n+1,p̃n+3/4)+H(qn,pn+1/4)

accept the proposal: (qn+1, pn+3/4) = (q̃n+1, p̃n+3/4)

else reject the proposal: (qn+1, pn+3/4) = (qn, pn+1/4)

p̃n+1 = −pn+3/4

(qn+1, pn+1) = ΨOU
∆t/2(q

n+1, p̃n+1)

where Un ∼ U(0, 1).

Properties ([TL, Rousset, Stoltz 2018])

The Markov chain (qn, pn)n≥0 admits µ as an invariant measure.

To prove ergodicity, it remains to check irreducibility [Hartmann, 2008].
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Numerical parameters and generalizations

• In Ψrev
∆t , one can use any potential V ! Choosing the potential

V of the target measure dν = Z−1
ν e−V dσM is good to

increase the acceptance probability.

• If ∆tγ/4 = 1, one obtains a HMC (or MALA) algorithm. If
∆tγ/4 = 1 and V = 0 in Ψrev

∆t , this is a constrained random
walk MH algorithm [Goodman, Holmes-Cerfon, Zappa, 2017].

• In pratice, one can use K steps of RATTLE within Ψrev to get
less correlated samples. [Bou-Rabee, Sanz Serna]

• If Ψrev
∆t (q

n, pn+1/4) = Ψ∆t(q
n, pn+1/4) (reverse projection

check OK), one obtains a consistent discretization of the
constrained Langevin dynamics.

• Similar ideas can be used to enforce inequality constraints.

• It may be interesting for numerical purposes to consider non
identity mass matrices.
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Beyond reverse projection check

Work with G. Stoltz and W. Zhang following discussions with P. Breiding

In many situations, one is able to compute if not all, many
solutions to the problem: for (q, q̃) ∈ M× R

d ,

find Λ(q, q̃) ∈ R
m s.t. q̃ +∇ξ(q)Λ(q, q̃) ∈ M.

Let us assume that there exists D ⊂ M× R
d such that for all

(q, q̃) ∈ D, there exists n(q, q̃) ∈ N which is locally constant, and
n(q, q̃) C 1 functions (Λi(q, q̃) : D → R

m)1≤i≤n(q,q̃) such that

∀(q, q̃) ∈ D, q̃ +∇ξ(q)Λi(q, q̃) ∈ M.

How to use this additional information ?
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Multiple projection constrained GHMC (1/2)

Let us assign a probability πi(q, q̃) to each of the solutions
(Λi (q, q̃))1≤i≤n(q,q̃):

πi (q, q̃) ≥ 0 and

n(q,q̃)
∑

i=1

πi(q, q̃) = 1.

For example, πi (q, q̃) = 1
n(q,q̃) .

Then choose one of the solution at random, and adapt the
constrained GHMC algorithm.

Remark: If all the solutions can be computed, then there is no need
of a reverse projection check.
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Multiple projection constrained GHMC (2/2)

1. Update momenta: (qn, pn+1/4) = ΨOU
∆t/2(q

n, pn)

2. Compute the Lagrange multipliers (Λi(qn, q̃n))1≤i≤n(qn,q̃n),

where q̃n = qn +∆t
[

pn+1/4 − ∆t
2
∇V (qn)

]

. Choose index
in ∈ {1, . . . , n(qn, q̃n)} with probability πi

n
(qn, q̃n).

3. Compute the move (q̃n+1, p̃n+3/4) = Ψ∆t(q
n, pn+1/4), where

Ψ∆t uses in the RATTLE step the Lagrange multiplier Λin .

4. Check if one of the Lagrange multipliers (denoted by Λjn)
(Λj(q̃n+1, q̄n+1))1≤j≤n(qn+1,q̄n+1) brings back to (qn,−pn+1/4),

where q̄n+1 = q̃n+1 +∆t
[

p̃n+3/4 − ∆t
2
∇V (q̃n+1)

]

. If not, set

(qn+1, pn+3/4) = (qn, pn+1/4), and go to Step 6.

5. Accept the move (qn+1, pn+3/4) = (q̃n+1, p̃n+3/4) with probability

1 ∧
(

πj
n
(q̃n+1, q̄n+1)

πin(qn, q̃n)
e
−H(q̃n+1,p̃n+3/4)+H(qn,pn+1/4)

)

else reject (qn+1, pn+3/4) = (qn, pn+1/4).

6. p̃n+1 = −pn+3/4 and (qn+1, pn+1) = ΨOU
∆t/2(q

n+1, p̃n+1)
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Theoretical result

One can adapt the arguments of the work [TL, Rousset, Stoltz 2018]

to show that

Properties ([TL, Stoltz, Zhang 2020])

The Markov chain (qn, pn)n≥0 admits µ as an invariant measure.

Same remarks as before apply: change V or the number of steps in
Ψ∆t , MALA version if ∆tγ/4 = 1, inequality constraints, change
the mass matrix, ...

See the preprint [TL, Stoltz, Zhang 2020] for numerical
experiments: this algorithm can be useful to converge quicker to
equilibrium.
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Adaptive biasing techniques
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Adaptive biasing techniques

We suppose again that we know a slow variable of dimension 1:
ξ(X t), where ξ : Rd → T is a so-called reaction coordinate.

This reaction coordinate will be used to bias the dynamics
(adaptive importance sampling technique), using the free energy A

associated with the reaction coordination ξ.

For example, in the 2D simple examples: ξ(x , y) = x .
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Adaptive biasing techniques

The bottom line of adaptive methods is the following: for “well
chosen” ξ the potential V − A ◦ ξ is less rugged than V . Indeed, by
construction ξ∗ exp(−β(V − A ◦ ξ)) = 1T.

Problem: A is unknown ! Idea: use a time dependent potential of
the form

Vt(x) = V (x)− At(ξ(x))

where At is an approximation at time t of A, given the
configurations visited so far.

Hopes:

• build a dynamics which goes quickly to equilibrium,

• compute free energy profiles.

Wang-Landau, ABF, metadynamics: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello, Wang, Landau,...
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Free energy biased dynamics (1/2)
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A 2D example of a free energy biased trajectory: energetic barrier.
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Free energy biased dynamics (2/2)
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Updating strategies
How to update At ? Two methods depending on wether A′

t

(Adaptive Biasing Force) or At (Adaptive Biasing Potential) is
approximated.
To avoid geometry problem, an extended configurational space
(x , z) ∈ R

n+1 may be considered, together with the meta-potential:

V k(x , z) = V (x) + k(z − ξ(x))2.

Choosing (x , z) 7→ z as a reaction coordinate, the associated free
energy Ak is close to A (in the limit k → ∞, up to an additive constant).

Adaptive algorithms used in molecular dynamics fall into one of
these four possible combinations [TL, M. Rousset, G. Stoltz, J Chem Phys, 2007]:

A′
t At

V ABF Wang-Landau
V k ... metadynamics
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The ABF method

For the Adaptive Biasing Force (ABF) method, the idea is to use
the formula

A′(z) =

∫

Σ(z)

(∇V · ∇ξ
|∇ξ|2 − β−1

div

( ∇ξ
|∇ξ|2

))

e−βV δξ(x)−z(dx)

∫

Σ(z)
e−βV δξ(x)−z(dx)

=

∫

Σ(z)
f dνΣ(z) = Eν(f (X )|ξ(X ) = z).

The mean force A′(z) is the average of f with respect to νΣ(z).
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The ABF method
In the simple case ξ(x , y) = x , remember that

A(x) = −β−1 ln

(
∫

e−βV (x ,y)dy

)

,

so that

A′(x) =

∫

Σ(x)
∂xV e−βV (x ,y) dy

∫

Σ(x)
e−βV (x ,y) dy

=

∫

∂xV dνΣ(x).

Notice that actually, whatever At is,

A′(z) =

∫

Σ(z)
f e−β(V−At◦ξ) δξ(x)−z(dx)

∫

Σ(z)
e−β(V−At◦ξ) δξ(x)−z(dx)

.
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The ABF method
Thus, we would like to simulate:

{

dX t = −∇(V − A ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′(z) = Eν (f (X )|ξ(X ) = z)

but A is unknown...
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx .



Introduction Free energy Thermodynamic integration Adaptive biasing techniques

The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx .

Questions: Does A′
t converge to A′ ? What did we gain compared

to the original gradient dynamics ?
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Back to the 2D example
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Back to the toy example for solvation
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The reaction coordinate ξ is the distance between the two
monomers. −→ simulation
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Longtime convergence and entropy (1/3)

Recall the original gradient dynamics:

dQt = −∇V (Qt) dt +
√

2β−1dW t .

The associated (linear) Fokker-Planck equation writes:

∂tφ = div
(

∇Vφ+ β−1∇φ
)

.

where Qt ∼ φ(t,q) dq.

The metastable behaviour of Qt is related to the multimodality of
ν, which can be quantified through the rate of convergence of φ to
φ∞ = Z−1 exp(−βV ).

A classical approach for partial differential equations (PDEs):
entropy techniques.
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Longtime convergence and entropy (2/3)

Notice that the Fokker-Planck equation rewrites

∂tφ = β−1
div

(

φ∞∇
(

φ

φ∞

))

.

Let us introduce the entropy:

E (t) = H(φ(t, ·)|φ∞) =

∫

ln

(

φ

φ∞

)

φ.

We have (Csiszár-Kullback inequality):

‖φ(t, ·)− φ∞‖L1 ≤
√

2E (t).
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Longtime convergence and entropy (3/3)

dE

dt
=

∫

ln

(

φ

φ∞

)

∂tφ

= β−1

∫

ln

(

φ

φ∞

)

div

(

φ∞∇
(

φ

φ∞

))

= −β−1

∫
∣

∣

∣

∣

∇ ln

(

φ

φ∞

)∣

∣

∣

∣

2

φ =: −β−1I (φ(t, ·)|φ∞).

If V is such that the following Logarithmic Sobolev inequality
(LSI(R)) holds: ∀φ pdf,

H(φ|φ∞) ≤ 1

2R
I (φ|φ∞)

then E (t) ≤ E (0) exp(−2β−1Rt) and thus φ converges to φ∞
exponentially fast with rate β−1R .

Metastability ⇐⇒ small R
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Efficiency of thermodynamic integration

With thermodynamic integration, the conditional measures νΣ(z)

are sampled rather than the original Gibbs measure ν. The
long-time behaviour of the constrained dynamics (RCD) will be
essentially limited by the LSI contant ρ(z) of the conditional
measures νΣ(z) (to be compared with the LSI constant R of the
original measure ν). For well-chosen ξ, ρ(z) ≫ R , which explains
the efficiency of the whole procedure.
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Convergence of ABF (1/4)
A convergence result [TL, M. Rousset, G. Stoltz, Nonlinearity 2008]: Recall the
ABF Fokker-Planck equation:







∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫
f ψ δξ(x)−z(dx)∫
ψ δξ(x)−z(dx)

.

Suppose:

(H1) “Ergodicity” of the microscopic variables: the conditional
probability measures νΣ(z) satisfy a LSI(ρ),

(H2) Bounded coupling:
∥

∥∇Σ(z)f
∥

∥

L∞
<∞,

then
‖A′

t − A′‖L2 ≤ C exp(−β−1 min(ρ, r)t).

The rate of convergence is limited by:

• the rate r of convergence of ψ =
∫

ψ δξ(x)−z(dx) to ψ∞,

• the LSI constant ρ (the real limitation).
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Convergence of ABF (2/4)

In summary:

• Original gradient dynamics: exp(−β−1Rt) where R is the LSI
constant for ν;

• ABF dynamics: exp(−β−1ρt) where ρ is the LSI constant for
the conditioned probability measures νΣ(z).

If ξ is well chosen, ρ≫ R : the free energy can be computed very
efficiently.

Two ingredients of the proof:

(1) The marginal ψ(t, z) =
∫

ψ(t, x) δξ(x)−z(dx) satisfies a closed
PDE:

∂tψ = β−1∂z ,zψ on T,

and thus, ψ converges towards ψ∞ ≡ 1, with exponential speed
C exp(−4π2β−1t). (Here, r = 4π2).
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Convergence of ABF (3/4)

(2) The total entropy can be decomposed as [N. Grunewald, F. Otto, C. Villani,

M. Westdickenberg, Ann. IHP, 2009]:

E = EM + Em

where
The total entropy is E = H(ψ|ψ∞),

The macroscopic entropy is EM = H(ψ|ψ∞),

The microscopic entropy is

Em =

∫

H
(

ψ(·|ξ(x) = z)
∣

∣

∣
ψ∞(·|ξ(x) = z)

)

ψ(z) dz .

We already know that EM goes to zero: it remains only to consider
Em...
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Convergence of ABF (4/4)

Other results based on this set of assumptions:

• [TL, JFA 2008] LSI for the cond. meas. νΣ(z)

+ LSI for the marginal ν(dz) = ξ∗ν(dz)
+ bdd coupling (‖∇Σ(z)f ‖L∞ <∞) =⇒ LSI for ν.

• [F. Legoll, TL, Nonlinearity, 2010] Effective dynamics for ξ(Q t). Uniform
control in time:

H(L(ξ(Q t))|L(zt)) ≤ C

(‖∇Σ(z)f ‖L∞
ρ

)2

H(L(Q0)|ν).
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Discretization of ABF
Discretization of adaptive methods can be done using two
(complementary) approaches:

• Use empirical means over many replicas (interacting particle
system):

E(f (X t)|ξ(X t) = z) ≃
∑N

m=1 f (X
m,N
t ) δα(ξ(Xm,N

t )− z)
∑N

m=1 δ
α(ξ(Xm,N

t )− z)
.

This approach is easy to parallelize, flexible (selection
mechanisms) and efficient in cases with multiple reactive
paths. [TL, M. Rousset, G. Stoltz, 2007; C. Chipot, TL, K. Minoukadeh, 2010 ; TL,

K. Minoukadeh, 2010]

• Use trajectorial averages along a single path:

E(f (X t)|ξ(X t) = z) ≃
∫ t

0
f (X s) δ

α(ξ(X s)− z) ds
∫ t

0
δα(ξ(X s)− z) ds

.

The longtime behavior is much more difficult to analyze.
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Back to the original problem

How to use free energy to compute canonical averages
∫

ϕdν = Z−1
∫

ϕe−βV ?

• Importance sampling:

∫

ϕ dν =

∫

ϕe−βA◦ξ Z−1
A e−β(V−A◦ξ)

∫

e−βA◦ξ Z−1
A e−β(V−A◦ξ)

.

• Conditioning:

∫

ϕ dν =

∫

z

(

∫

Σ(z)
ϕ dνΣ(z)

)

e−βA(z) dz

∫

z

e−βA(z) dz

.
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ABF: extensions and open problems

Numerical aspects:

• Multiple walker ABF [C. Chipot, TL, K. Minoukadeh]

• Projection on a gradient of the mean force (Helmholtz
decomposition) [J. Hénin, TL, 2016-2017]

• Reaction coordinates in larger dimension: exchange bias,
separated representations [Ehrlacher, TL, Monmarché, 2019], learning
techniques

• Link with Stein Variational Gradient Descent?

Theoretical aspects:

• Analysis when the mean force (or the free energy) is
approximated using time averages [G. Fort, B. Jourdain, E. Kuhn, TL,

G. Stoltz, P.A. Zitt, 2014-2019]

• Extension of the analysis to the Langevin dynamics?
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Other techniques to compute thermodynamic quantities

Other algorithms which are used in MD to sample efficiently ν:

• Umbrella sampling and statistical reconstruction: Histogram
methods

• Out of equilibrium methods: fluctuation relations Ã la
Jarzynski-Crooks

• Modify the dynamics: Metropolis Hastings algorithms with
well-chosen proposals, non-reversible perturbations,...

• Interacting replicas techniques: Parallel tempering, Replica
exchange dynamics, ...
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